4 research outputs found

    Calculation of the average Green's function of electrons in a stochastic medium via higher-dimensional bosonization

    Full text link
    The disorder averaged single-particle Green's function of electrons subject to a time-dependent random potential with long-range spatial correlations is calculated by means of bosonization in arbitrary dimensions. For static disorder our method is equivalent with conventional perturbation theory based on the lowest order Born approximation. For dynamic disorder, however, we obtain a new non-perturbative expression for the average Green's function. Bosonization also provides a solid microscopic basis for the description of the quantum dynamics of an interacting many-body system via an effective stochastic model with Gaussian probability distribution.Comment: RevTex, no figure

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit NN\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache
    corecore